

Datasheet

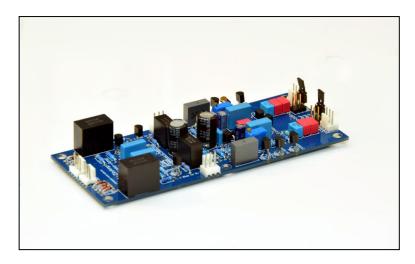
Solid State PhonoAmp

Application & Purpose:

Exceptionally high quality stereo solid state phono-amp, featuring two complementary BJT pairs; one as a gain stage, the other as a follower. RIAA equalisation occurs after the first and in the second pair. Achieves very low levels of THD < 0.006% mostly lower 2nd order.


Suitable for MM phono cartridges

Input capacitance loading can be adjusted with jumper switches; 50pf, 100pf, 220pf and zero


Low output impedance with sufficient current to drive a pre-amp or power amp, plus an additional line-level output.

WARNING: High DC voltage device.

THD

Typically < 0.006% - mostly lower 2nd order

Details:

An exceptionally high-quality stereo audio phono-amplifier featuring a dual gain stage with feedback and a current follower. Low output impedance with sufficient current to drive a pre-amp or power-amp plus an additional line level input.

Low-distortion design, featuring a switchable input capacitance loading that can be adjusted with jumper switches; 50pF, 100pf, 220pf and zero.

Setup and Usage:

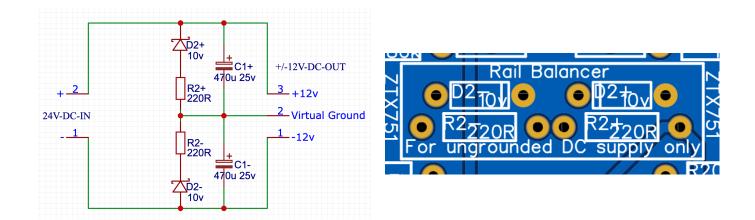
This module is usually installed in a ZinAmp enclosure with the input at the front of the amp; this may appear to be back-to-front. This is to keep the input away from the transformers and eliminate any electromagnetic noise from the transformer windings. It is usual to fit an audio grade toroidal transformer with a goss band around it's outer diameter in order to further suppress EMI which may cause hum.

The transistors in this module generate a small amount of heat, however no provision for heat-sinking is required. Simple ventilation is recommended.

This module requires a minimum of -12/+12v and a maximum of -21/+21v i.e. a split rail supply. Each channel (l & r) needs to be biased using the two trimmer pots on the board. The bias is measured at the points indicated on the board (next to R13L and R13R) and must be set to as close to zero volts as possible (i.e. within +/- 0.5v). Place one terminal on the bias point and the other on the ground/mid-point of the power supply to measure this voltage.

Individual ground nets separate the audio and power grounds, eliminating hum. Power ground should make its own separate direct connection to the ground star or mid-point of the power-supply. Audio ground should be connected to the preamp or line-in audio ground.

Do not mix or directly connect these grounds on the module PCB, otherwise hum will result.


Power Supply Requirements:

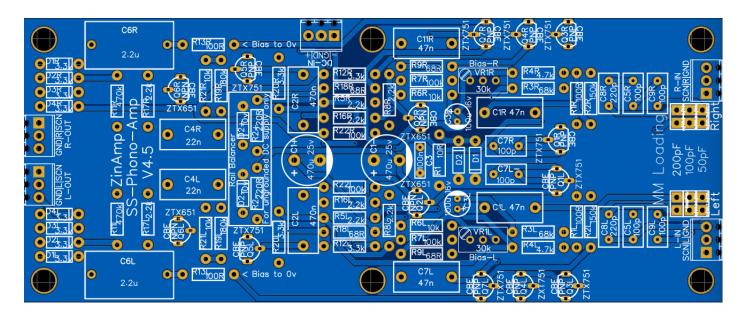
This module has -/+ split rails. The min voltage is -/+12v and the max is -/+21v. Power supply options are:

- 1. ZinAmp PreAmp Regulated Supply Module requires a toroidal transformer min 2x18v, max 2x25v
- 2. External linear regulated desktop supply 24vDC
 - requires rail balancing for -/+12v (see below)
- 3. Unregulated supply using a rectifier and filter caps not recommended but possible
- 4. Switch-mode external supply 24vDC not recommended but possible
 - requires rail balancing for -/+12v (see below)

RAIL BALANCING - PLEASE READ

If you are powering this amplifier with an external DC supply i.e. one without a DC ground, you will need to fit the four components marked on the board as D2+, D2-, R2+ and R2-. These balance or 'split' the voltage rails around a virtual ground. This is required to stabilise the amplifier's bias, otherwise the supply rails and bias will move and change! See below.

24v DC Supply split into +12v and -12v | D2+, D2-, R2+ and R2- on PCB


Optional Components

- D1L,D2L,D3l,D4L,D1R,D2R,D3R,D4R 3.3v Zener Diodes. These form a voltage clamp at the output to prevent high voltages reaching your power amp or subsequent pre-amp. Omit at constructors' own risk!
- C5L,C5R,C8L,C8R,C9L,C8R These provide a choice of capacitive loading for the phono cartridge using a three-row jumper switch for each channel. These capacitors can be omitted as required, along with the three row jumper pins and jumper link.
- C8R and C8L these can be swapped for lower values e.g. 1uF if the input impedance to the next stage is > 30k and the volume Pot is >150k, otherwise the higher value of 2.2uF is recommended to avoid loss of low-frequency response.
- Gain can be increased from 40dB to 45dB by changing R7L and R7R from 82k to 150k. Conversely, gain can be reduced with a value like 68k. Increasing gain introduces a small risk of turntable-rumble inducing low frequency or 'motorboating' oscillation. Motorboating can be heard as a purring or throbbing sound triggered by low frequency noise or vibration from your turntable. This is extremely unlikely with the standard design.

Safety Note:

This module runs with DC voltages that are close to 42v between negative to positive rails. This is enough to give you a very unpleasant shock and possibly worse. Unlike AC current, DC is more dangerous when touched as you will tend to stick to it rather than be repelled from it as with AC. Before handling this module, switch off, disconnect the AC power lead and discharge the power supplies in your amplifier.

Bare PCB:

Connections:

Connector	Terminal	Destination	Notes	
L-Out	L	Volume Control or Selector Switch		
	SCN	Cable Screen (Power Ground)		
	GND	Audio Ground		
R-Out	R	Volume Control or Selector Switch		
	SCN	Cable Screen (Power Ground)		
	GND	Audio Ground		
L-In	L	Left Channel Phono Input of your installation +ve terminal		
	GND	Audio Ground		
	SCN	Cable Screen	Cable screen is not connected at the phono-jack input. Doing so will cause hum	
R-In	R	Right Channel Phono Input of your installation +ve terminal		
	GND	Audio Ground		
	SCN	Cable Screen	Cable screen is not connected at the phono-jack input. Doing so will cause hum	
DC-IN	-IGNDI+	Phono Terminals on your PreAmp Power Supply	Do not connect the GND terminal to Audio Ground	

Parts List:

CONNECTORS: Both blank and ready-built PCB requires connectors be purchased and soldered on by the constructor. This is to give the constructor a choice of how they wire their own particular installation. Terminal block connectors are indicated in the list below in blue and can be swapped for equivalent 2.54mm pitch connectors e.g. Molex KK254 headers, which are provided to the constructor in self-wire kits.

Component values highlighted in yellow below may differ from your PCB. Please use the value shown in the table, not on the PCB.

Designator	Value/Spec	Qty	Manufacturer	Manufacturer Part	Supplier Part
C1+,C1-	470u 25v	2	Nichicon	UVY1E471MPD	739-5285
C1L,C7L,C11R,C1R	47n	4	Kemet	R71PF24704030K	<u>171-9210</u>
C2R,C2L	470n	2	Panasonic	ECWFE2W474P1	105-1083
C3	100n	1	Epcos	B32529C1104K000	896-1332
C3L,C3R	100u 16v	2	Rubycon	16PK100MEFC5X11	763-9396
C4R,C4L	22n	2	Kemet	R463F222050N0K	165-0046
C6R,C6L	2.2u	2	Panasonic	ECWFE2W225JA	105-1076
C7L,C9R,C9L,C5L,C5R ,C7R	100p	6	Wima	FKP2/100/100/5	484-1978
C8R,C8L	220p	2	Wima	FKP2/220/100/5	484-1984
D1,D2	50v 1A	2	Vishay	1N4001-E3/54	<u>628-8931</u>
D1L,D2R,D4R,D3L,D4 L,D2L,D3R,D1R	3.3v	8	Nexperia	BZX79-C3V3,113	544-3531
D2-,D2+	10v	2	Nexperia	BZX79-C10,113	544-4461
DC-IN,PHON-L,PHON -R	3 Pole Terminal (self-wire only)	3	RS-PRO	790-1092	790-1092
IN-L,IN-R	2 Pole Terminal (self-wire only)	3	RS-PRO	790-1098	790-1092
L,R	3 Row Jumper	2	Harwin	M20-9980346	745-7046
L,R	Shorting Link	2	RS-PRO	251-8575	251-8575
Q1L,Q1R,Q3L,Q3R,Q 5L,Q5R,Q7L,Q7R,Q4 R,Q4L	BC559 or ZTX751	10	On Semi Zetex	BC559 or ZTX751	803-1144 or 295-523
Q2R,Q2L,Q6R,Q6L	BC550 or ZTX651	4	On Semi Zetex	BC550 or ZTX651	803-1125 or 295-501
R1	10R	2	Vishay	MBB02070C1009FCT00	<u>125-1154</u>
R11L,R11R	470k	2	TE Connectivity	LR1F470K	149-149
R12L,R12R,R20L,R20 R	3.3k	4	Vishay	LR1F3K4	125-1162
R16L,R16R	750R	2	Vishay	MRS25000C7500FCT00	683-4008
R17L,R17R	1.5k	2	Vishay	MRS25000C1501FCT00	683-3219
R18L,R18R	56R	2	Vishay	MRS25000C5609FCT00	683-4203
R19L,R19R	180k	2	Vishay	MRS25000C1503FCT00	683-3049
R2-,R2+	220R	2	TE Connectivity	LR1F220R	<u>148-348</u>

R25L,R10L,R10R,R25					
R,R6L,R6R	15k	6	Vishay	MRS25000C1502FCT00	683-3055
			MRS25000C1503FCT		
R2L,R2R	150k	2	00	Vishay	683-3049
R3L,R3R	68k	2	Vishay	MRS25000C6802FCT00	683-3957
R4L,R4R	4.7k	2	Vishay	MRS25000C4701FCT00	683-3799
R6L,R6R,R21R,R21L	10k	4	TE Connectivity	LR1F10K	125-1164
R7L,R7R, R22R,R22L	100k	4	TE Connectivity	LR1F100K	125-1168
R8L,R8R,R17L,R17R,					
R5L,R5R,R16L,R16R	2.2k	8	Vishay	MRS25000C2201FCT00	683-3449
R9L,R9R	82R	2	Vishay	MBB02070C8209FCT00	506-4784
R9L,R9R,R13L,R13R	68R	4	TE Connectivity	LR1F100R	125-1155
VR1L, VR1R	30k	2	Bournes	3296W-1-303LF	785-9749

Parts available from $\underline{\sf RS\ Online}$ unless indicated. Also try $\underline{\sf Farnell}$, $\underline{\sf Mouser}$ and other online suppliers.

Parts from different manufacturers can be substituted where spec is sufficient Supplier trading names may differ by country.